Canberra electricity prices jump 17% due to Carbon Tax

The ACT despite being only the population (300K) of a medium city has an Independent Competition and Regulatory Commission (ICRC). There is no limit to bureaucracy here. Reading between the lines and noting the whingeing from ACTEW I suspect increases will not stop at 17%. I wonder what price hikes are due out in the States.
The Canberra blog RiotACT has an article – they also ran on staff cuts at Department of Climate Change and Energy Efficiency as they need to downsize from 900 to about 600 staff to meet the demands of its budget. Comments do not show much sympathy for staff there.

One thought on “Canberra electricity prices jump 17% due to Carbon Tax”

  1. In my view we need to focus on the assumed problem, namely carbon dioxide and, to a lesser extent, methane perhaps. If I refer to trace gases take it to mean these, because I refuse to call them greenhouse gases.

    We have what we have in the Earth’s total system. Somehow, in some way we may never fully understand, a long-term near equilibrium situation has developed. We have some energy being generated in the core, mantle and crust, most likely by fission I think, but I won’t go into that. But it does set up a temperature gradient from the core to the surface which is very stable below the outer kilometre or so of the crust. However, it may vary in long-term natural cycles that have something to do with planetary orbits. Likewise, the intensity of solar radiation getting through the atmosphere to the surface may also vary in natural cycles which may have something to do with planetary influences on the Sun, and on the eccentricity of Earth’s orbit and on cosmic ray intensity and on cloud cover, ENSO cycles etc.

    There is much to be learned about such natural cycles, and we have seen papers by Nicola Scafetta for example which appear to provide compelling evidence of the natural cycles. I believe that in fact such natural cycles are quite sufficient to explain all observed climate change, including what has happened in the last half century or so, right up to the present. The world has just been alarmed because the 1000 year cycle and the 60 year cycle were both rising around 1970 to 1998, just as they did by about the same amount 60 years earlier, and 60 years before that and no doubt further back. We cannot escape the obvious fact that there is a ~1000 year cycle which is due for another maximum within 50 to 200 years. Then there will be 500 years of falling temperatures.

    But the central issue is whether or not trace gases are really having any effect at all on climate.

    In my paper I have explained the physics of heat transfer and demonstrated why trace gases cannot have any effect whatsoever on what we call climate.

    Climate may be thought of as the mean of temperature measurements, usually made in the air between 1.5 and 2 metres above the ground. Thermometers are affected by the thermal energy in that air near the surface. As you can read here thermal energy is distinct from heat. It is transferred by molecular collision processes (conduction and diffusion,) by physical movement (convection) and by radiation. . The energy in radiation is not thermal energy. Thermal energy is first converted to electromagnetic (radiated) energy and then that EM energy has to be converted back to thermal energy in a target. Hence, in a sense thermal energy only appears to be transferred by radiation.

    The Second Law of Thermodynamics (SLoT) tells us that in any (one way, independent) spontaneous process, entropy cannot decrease unless external energy is added. There are no two ways about it. If spontaneous radiation emanates from a cooler object (or atmosphere) its EM energy cannot be converted back to thermal energy in a warmer target, such as Earth’s surface. This point is not debatable. A violation of the SLoT cannot be excused on the grounds that there will be some subsequent independent process (maybe not even radiation) which will transfer more thermal energy back to the atmosphere. If you disagree, you are mistaken.

    However, the radiation from a cooler body can affect the radiative component of the cooling of a warmer body. Although such radiation undergoes what I call “resonant scattering” this does involve the “resonators” in the warmer body and uses up some of its radiating capacity. Because the incident radiation supplies the energy, the warmer body does not need to convert an equivalent amount of its own thermal energy. Hence it cools more slowly.

    But, the resonating process involves all the (potential) different frequencies in the incident radiation. There will be far less effect when there are limited frequencies as is the case for radiation from a trace gas in the atmosphere. Furthermore, the effect depends on the temperature of that gas and is less when it is cooler. It is far less from space (equivalent to about 2.7K) and so there is no slowing of cooling for that portion of radiation which gets through the atmospheric window.

    The remaining radiation (when we look at net figures, not all that backradiation) represents less than a third of all the cooling processes from the surface to the atmosphere. The other non-radiative processes can, and will, simply speed up in order to compensate, because they do so if the temperature gap increases. There are further reasons discussed in Q.3 in the Appendix of my paper.

    So there is no overall effect at all due to trace gases on the rate of cooling of the surface. Thus there can be no effect upon climate.

    Discussion on this continues on this thread.

Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>